
DeSyRe: on-Demand System Reliability FP7-ICT project number 287611

Dissemination Level: Restricted/Public Page 1 of 34

DeSyRe
 on-Demand System Reliability

Design of the DeSyRe online testing,

graceful degradation and Virtualization

support

CONTRACT NR 287611

TYPE OF DOCUMENT Deliverable D3.3

AUTHOR I. Sourdis, S. Tzilis, A. Malek, G. Gaydadjiev, R. Shafik, G.

Rawerda, D. Pnevmatikatos, D. Theodoropoulos

ABSTRACT This document describes the final design for online testing,

graceful-degradation, and virtualization. In addition, this

document describes the DeSyRe programming and execution

model.

WORKPACKAGE WP3

DISSEMINATION LEVEL Restricted/Public

DOCUMENT HISTORY

Release Date Comments Status Distribution

v0.1 23-05-2013 Document creation Draft All Partners

v0.2 20-06-2013 Adding on-line testing and gracefull

degradation text

Draft All Partners

v0.3 26-06-2013 Complete draft Draft All Partners

v0.4 01-07-2013 Incorporating comments from the quality

check control

Draft All Partners

v0.5 02-07-2013 Incorporating comments from the quality

check control

Draft All Partners

v0.6 10-07-2013 Incorporating comments from the quality

check control

Draft All Partners

v1.0 11-07-2013 Finalizing the document FINAL EC, All

partners

© 2011,2012, 2013 DeSyRe Consortium Partners. All rights reserved.

DeSyRe: on-Demand System Reliability FP7-ICT project number 287611

Dissemination Level: Restricted/Public Page 2 of 34

Contents

1.! Executive Summary .. 3!

2.! DeSyRe System architecture .. 4!

3.! Online Testing ... 4!

3.1! Online Test Triggering or Scheduling Mechanism ... 5!

3.2! Xentium DSP testing ... 6!

3.2.1! Xentium NI Wrapper .. 7!

3.2.2! On-line testing support ... 8!

3.3! SiMS testing ... 12!

3.4! Memory Test Wrapper ... 13!

3.4.1! Memory March tests ... 14!

3.5! Network- On-Chip (NoC) testing .. 16!

3.6! Testing of the fine-grain reconfigurable substrate ... 18!

4.! Graceful degradation .. 20!

4.1! The solution space and solution evaluation ... 21!

4.2! Exhaustive search and optimizations ... 22!

4.3! A heuristic that produces an incremental solution ... 24!

5.! Task-based Programming and Execution model ... 27!

5.1! Software code annotation .. 27!

5.2! Check-pointing benefits of task-based programming model ... 28!

5.3! Impact on virtualization support and context switching .. 29!

Appendices .. 32!

1.! Quantification and prediction of relevant metrics for Graceful Degradation 32!

References: .. 34!

DeSyRe: on-Demand System Reliability FP7-ICT project number 287611

Dissemination Level: Restricted/Public Page 3 of 34

1. Executive Summary

This document describes the design of the DeSyRe online testing, graceful degradation, and

Virtualization support. First, the Online Testing approach as defined by the consortium is presented

in detail. We start with describing all of the techniques used for online testing of the different

DeSyRe system components. More precisely, we start with the Xentium processor, which –

similarly to other DeSyRe components - is isolated from the rest of the system and tested through

its Network interface. The Xentium datapath and tightly coupled memory are tested using a

software-implemented test mechanism (a gold test sequence of instructions). The SiMS core uses a

similar software-oriented approach exploiting the NOP slots of a program to insert online test

instructions. For testing DeSyRe distributed memory blocks, a centralized Built-In Self Test (BIST)

facility is used that will “walk through” the memory blocks and test them in isolation using the

IEEE1500 test access mechanism over the DeSyRe NoC. This provides both significant saving in

area and additional flexibility for the BIST engine implementation. The memory BIST engine in a

particular DeSyRe system implementation will be programmed to generate the set of merely small

yet high-coverage tests for the specific memory blocks organization, size and realization

technology. The NoC is tested by selected techniques that use error detection codes to trigger a fault

characterization step. The Fault characterization will detect permanent faults and will thereafter

diagnose the faulty link or router in order to update the fault-map with the detailed fault information

needed for the graceful degradation decisions. To reduce testing complexity, the fine-gran fabric

will be tested only in the context of the particular functionality instantiated at the time of testing.

This requires that each different function targeting this substrate has to be accompanied with the set

of test vectors that the centralized BIST engine will use when needed.

All of the test results of the different components will be translated into corresponding

updates to the DeSyRe system fault-map (described in D4.2) that plays a central role in the

Graceful Degradation process. The DeSyRe system uses heuristics to provide graceful degradation

and close-to-optimal system configuration that strikes the balance between the HW resources, the

SW workload and the task mapping. The solution space is walked through in a smart way by

considering three relevant metrics: Functionality, Performance, and Energy using a DeSyRe

specific cost model.

Furthermore, the task based execution model of DeSyRe is described along with its impact

on check-pointing as well as on virtualization and context switching. The execution model divides

the application in tasks, through code annotations, mapped to different system components.

Communication is allowed only at the task boundaries. This has a direct impact to checkpointing

since checkpoints need to include only the inputs of tasks and a pointer to the task graph, rather

than components’ architectural state. In addition, virtualization is achieved by maintaining multiple

versions of task descriptions at the runtime system. In doing so, a task can be mapped to different

types of components by choosing the proper binary, targeting a certain component type. Context

switching and task migration are also supported by just maintaining different versions of task

descriptions. In a DeSyRe system, a task cannot be resumed from any arbitrary execution step,

instead it requires to be fully restarted using its initial input set; this consideration avoids the need

of saving and restoring architectural state.

